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Abstract

An iterative method has been applied to analyze free edge interlaminar stresses of composite laminates which are

subject to extension, bending, twisting and thermal loads. The stresses, which satisfy the traction-free conditions not
only at the free edges but also at the top and bottom surfaces of laminates, are obtained by using the
complementary virtual work and the extended Kantorovich method. In order to obtain accurate interlaminar

stresses, static and kinematic continuity conditions are applied at the interfaces between plies through iterations. To
demonstrate the validity of the proposed method, cross-ply, angle-ply, and quasi-isotropic laminates are considered.
Through the iteration processes, the convergence of the solutions is demonstrated. The present method provides
accurate stresses in the interior and near the free edges of laminates. It can be utilized as an analytical tool to

predict interlaminar stresses under the loads of mechanical and thermal combined. # 1999 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Numerous research e�orts have been made to resolve serious stress concentration/singularity near the
free edges of composite laminates which are caused by dissimilar material properties between plies.
However, since the di�culties occur during the process of obtaining the exact singular elasticity
solutions of free-edge interlaminar stress problems, approximate methods have been pursued which are
based on numerical or analytical approaches. Although recently developed numerical methods consist of
either ®nite element methods or boundary integral methods, simple and accurate analytical methods are
preferred in the preliminary design stage since they facilitate parametric study.
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After Spilker and Chou (1980) demonstrated the importance of satisfying the traction-free conditions
at the edges, stress-based methods have been proposed. These methods divide stress functions into in-
plane and out-of-plane functions. With appropriate stress function assumptions, the interlaminar stresses
at free edges have been calculated. Kassapoglou and Lagace (1986) determined the stresses based on the
integrated form of the force and moment equilibriums. However, at free edges the results do not satisfy
the pointwise traction-free conditions through the thickness. Thus its accuracy of predicted stresses in
out-of-plane direction is not reliable. Yin (1994a, 1994b) used piecewise polynomial approximations for
the out-of-plane stress functions which are continuous over each layer, and the interlaminar stresses
which are also continuous at the layer interfaces. His solution satis®es the free edge boundary conditions
in a pointwise sense.

Recently, Flanagan (1994) proposed an alternative e�cient method in which the out-of-plane stress
functions were assumed to be the solutions of the free vibration of a clamped±clamped beam. Also,
using the principle of complementary minimum energy, a simple method was proposed to determine the
in-plane stress functions. The stress functions given by his approach did not satisfy displacement
continuity conditions at the ply interfaces. Thus, the out-of-plane stress distributions were not predicted
accurately, and oscillations appeared. In addition, his results could not recover the classical lamination
theory (CLT) solution in the interior of laminates.

To accurately determine interlaminar stresses, stresses should be zero at the free edges and the top/
bottom surfaces of composite plates, while at the ply interfaces the stresses and displacements should be
continuous. The extended Kantorovich method has been applied by Cho and Yoon (1997) to e�ciently
predict approximate interlaminar stresses at the straight free edges of laminates under the extension
loads.

Analysis of free-edge stresses under bending or twisting are less common than of those under
extension loads. However, the importance of bending and twisting cases can not be neglected in the
least. In the present study, the iterative method is extended to the problems under the extension,
bending, twisting and thermal loads to provide accurate interlaminar stress distributions near the free
edges.

2. Formulation

The geometry of composite laminate with free edges is given in Fig. 1. The laminate consists of
orthotropic materials. The thickness of each ply is all same, and the plies have arbitrary angles relative
to the x axis. Extension, bending, twisting and thermal residual stresses are considered.

The linear elastic constitutive equations are assumed in each ply and they are expressed in the
following form:8>>>>>><>>>>>>:

E1
E2
E3
E4
E5
E6

9>>>>>>=>>>>>>;
�

26666664
S11 S12 S13 0 0 S16

S12 S22 S23 0 0 S26

S13 S23 S33 0 0 S36

0 0 0 S44 S45 0
0 0 0 S45 S55 0
S16 S26 S36 0 0 S66

37777775

8>>>>>><>>>>>>:

s1
s2
s3
s4
s5
s6

9>>>>>>=>>>>>>;
�

26666664
a1
a2
a3
0
0
a6

37777775DT, �1�

From the ®rst row of Eq. (1), the following relationship is obtained

s1 � �E1 ÿ a1DTÿ Sijsj �
S11

� j � 2,3,6�: �2�
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Substituting Eq. (2) into Eq. (1), all the strains can be expressed as

Ei � Ŝijsj � Si1

S11
E1 � âiDT �i,j � 2,3, . . . ,6�, �3�

where

Ŝij � Sij ÿ S1iS1j

S11
, âi � ai ÿ a1Si1

S11
: �4�

For the given geometric con®guration of laminates, the boundary conditions at the free edge and the
surfaces of the top and bottom faces are given in Eq. (5).

s2 � s4 � s6 � 0 at y � 0,b

s3 � s4 � s5 � 0 at z �2h=2: �5�
Generalized plane strain states are assumed and the stress ®elds are independent of the x-axis.

u�x,y,z� � �Ayÿ Bz� C �x�U� y,z� � o1zÿ o2y� u0,

v�x,y,z� � ÿAx2

2
ÿYxz� V� y,z� � o2xÿ o3z� v0

w�x,y,z� � B
x2

2
�Yxy�W� y,z� � o3yÿ o1x� w0, �6�

where A and B characterize the bending of the body in the x±z and x±y plane, respectively, C
characterizes the extension of the body about the x-axis. Y is the relative angle of rotation about the x-
axis. The constants o1, o2, o3, u0, v0, w0 characterize rigid displacements of the body. The coordinates
are nondimensionalized, as follows:

Fig. 1. Geometry of composite laminate with free edges.
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Z � z=h, x � y=h: �7�
Following the previous work of Yin (1994a, 1994b), the present analysis adopts the stress function

approach and uses the complementary virtual work principle. Lekhnitskii (1963) stress functions are
introduced to satisfy pointwise equilibrium equations automatically. These stress functions can be
divided into the in-plane and out-of-plane functions,

@2F

@Z2
� s2,

@2F

@x2
� s3,

@ 2F

@Z@x
� ÿs4

@C
@x
� ÿs5, @C

@Z
� s6, �8�

where

F �
Xn
i�1

fi�x�gi�Z�, C �
Xn
i�1

pi�x�gIi �Z� �9�

for extension, bending and thermal loadings (Case I). The superscript I in Eq. (9) denotes di�erentiation
with respect to Z.

F �
Xn
i�1

fi�x�gi�Z�, C �
Xn
i�1

pi�x�hi�Z� �10�

for twisting load (Case II).
The governing equations are obtained by taking the principle of complementary virtual work:

0 �
� � �

uidsij,j dx dy dz �
� � �
f�uidsij �,j ÿ ui,jdsij gdx dy dz

�
� �

S

uidsijnj dAÿ
� � �

1

2
�ui,j � uj,i �dsij dx dy dz: �11�

By using traction-free boundary conditions and neglecting rigid body motions, one obtains� �
�Dudsxx � Dvdsyx � Dwdszx�dy dz �

� �
Eijdsij dy dz, �12�

where

Du � Cÿ Bz, Dv � ÿYz, Dw � B

2
�Yy: �13�

2.1. 1st process: calculation of in-plane stress functions from an initial assumption

The in-plane stress functions are determined from the initially assumed basis set of out-of-plane stress
functions. The out-of-plane functions must satisfy traction-free conditions at the top and bottom
surfaces (i.e. The stress functions and their ®rst derivatives have to be zero in those regions). The out-of-
plane functions are assumed to be the eigenmodes of a clamped-clamped beam and a simply-supported
beam. The stress functions gi(Z ) and hi(Z ) through the thickness are given as follows. The even function
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set is expressed as:

gi�Z� � cos�kiZ� � sicosh�kiZ�, �14�
where the ki's are the solutions of the following characteristic equations,

cosh�ki=2�sin�ki=2� � cos�ki=2�sinh�ki=2� � 0

and

si � ÿ cos�ki=2�
cosh�ki=2� �15�

The odd function set is expressed as:

gi�Z� � sin�kiZ� � sisinh�kiZ�, �16�
where the ki's are the solutions of following characteristic equations,

cosh�ki=2�sin�ki=2� ÿ cos�ki=2�sinh�ki=2� � 0

si � ÿ cos�ki=2�
cosh�ki=2� �17�

and

hi�Z� � sin

�
ipZ� ip

2

�
: �18�

Substituting Eq. (8) into Eq. (12), the stresses are expressed in terms of fi and pi. Eq. (12) can be
expressed as follows, after integration by parts.�h

a
�4�
ij f

IV
j � a

�2�
ij f

II
j � a

�0�
ij fj � b

�2�
ij p

II
j � b

�0�
ij pj � ri

i
dfi dx�

�h
c
�2�
ij p

II
j � c

�0�
ij pj � d

�2�
ij f

II
j � d

�0�
ij fj � si

i
d

pi dx � 0, �i,j � 1,2, . . . ,n� �19�
where, for Case I,

a
�4�
ij �

�
Ŝ33gigj dZ,

a
�2�
ij �

�
Ŝ23

�
gII
i gj � gig

II
j

�
dZÿ

�
Ŝ44g

I
ig

I
j dZ,

a
�0�
ij �

�
Ŝ22g

II
i g

II
j dZ,

b
�2�
ij �

�
Ŝ36gig

II
j dZÿ

�
Ŝ45g

I
ig

I
j dZ,
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b
�0�
ij �

�
Ŝ26g

II
i g

II
j dZ,

c
�2�
ij � ÿ

�
Ŝ55g

I
ig

I
j dZ,

c
�0�
ij �

�
Ŝ66g

II
i g

II
j dZ,

d
�2�
ij �

�
Ŝ36g

II
i gj dZÿ

�
Ŝ45g

I
ig

I
j dZ,

d
�0�
ij �

�
Ŝ26g

II
i g

II
j dZ,

ri �
��

S12

S11
�Cÿ BhZ� � â2DT

�
gII
i dZ,

si �
��

S16

S11
�Cÿ BhZ� � â6DT

�
gII
i dZ �20�

and, for Case II,

a
�4�
ij �

�
Ŝ33gigj dZ,

a
�2�
ij �

�
Ŝ23

�
gII
i gj � gig

II
j

�
dZÿ

�
Ŝ44hig

I
j dZ,

a
�0�
ij �

�
Ŝ22g

II
i g

II
j dZ,

b
�2�
ij �

�
Ŝ36gih

I
j dZÿ

�
Ŝ45g

I
ihj dZ,

b
�0�
ij �

�
Ŝ26g

II
i h

I
j dZ,

c
�2�
ij � ÿ

�
Ŝ55hihj dZ,

c
�0�
ij �

�
Ŝ66h

I
ih

I
j dZ,
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d
�2�
ij �

�
Ŝ36h

I
igj dZÿ

�
Ŝ45hig

I
j dZ,

d
�0�
j �

�
Ŝ26h

I
ig

II
j dZ,

ri � 0,

si � ÿ
�
2Yhhi dZ: �21�

The boundary terms, induced by integration by parts, are eliminated from the free edge conditions
s2=s4=s6=0.

In Eq. (19), the governing equations are reduced to the ordinary di�erential equations where fi(x ) and
pi(x ) are coupled. The homogeneous solutions of fi and pi are assumed to be of the following forms,

fi � v f
i e

lx, pi � v
p
i e

lx �22�
Substituting Eq. (21) into Eq. (19), the ordinary di�erential equations are reduced to the following:

a
�0�
ij v

f
j �

�
a
�2�
ij � l2a�4�ij

�
v fII

j �
�
b
�0�
ij � l2b�2�ij

�
v
p
j � 0,

d
�0�
ij v

f
j � d

�2�
ij v

fII

j �
�
c
�0�
ij � l2c�2�ij

�
v
p
j � 0,

l2v f
j ÿ v fII

j � 0 �i,j � 1,2, . . . ,n� �23�

The 3rd equation of Eq. (23) is an auxiliary equation for conversion to an eigenproblem. Since the
interlaminar stresses decay in the interior region of laminates, only the negative roots of l 2 are selected.
From the eigenproblem, 3n eigenvalues are obtained, and the homogeneous solutions are obtained by a
3n-term linear combination,

f
�H�
i � v f

ij tje
ÿljx

p
�H�
i � v

p
ij tje

ÿljx �i � 1,2, . . . ,n�, � j � 1,2, . . . ,3n�, �24�

where tj are constants to be determined from the boundary conditions.
The particular solutions can be obtained from the assumption that fi(x ) and pi(x ) in Eq. (19) are

constants,

a
�0�
ij f

�P�
j � b

�0�
ij p
�P�
j � ÿri

b
�0�
ij f

�P�
j � c

�0�
ij p
�P�
j � ÿsi �i,j � 1,2, . . . ,n�: �25�

Accordingly, the in-plane stress functions are expressed as the sum of the homogeneous and particular
solutions,
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fi � f
�H�
i � f

�P�
i

pi � p
�H�
i � p

�P�
i �i � 1,2, . . . ,n�: �26�

Calculation of tj completes the determination of the in-plane functions. The coe�cients tj can be
determined from the zero boundary conditions of s2, s4 and s6 at the free edge,

v f
ij tj � ÿf �P�i ,

ljv
f
ij tj � 0

v
p
ij tj � ÿp�P�i �i � 1,2, . . . ,n�, � j � 1,2, . . . ,3n�: �27�

Substituting the calculated in-plane stress functions into Eq. (9), the interlaminar stresses for Case II
are given as follows. The interlaminar stresses for Case I can be obtained by substituting hi and hI

i for g
I
i

and gII
i .

s2 �
h
v f
ij tje

ÿljx � f
�P�
i

i
gII
i �Z�,

s3 � l2j v
f
ij tje

ÿljxgi�Z�,

s4 � ljv
f
ij tje

ÿljxgI
i�Z�,

s5 � ljv
p
ij tje

ÿljxhi�Z�

s6 �
h
v
p
ij tje

ÿljx � p
�P�
i

i
hI
i�Z� �i � 1,2, . . . ,n�, � j � 1,2, . . . ,3n�: �28�

2.2. 2nd process: improvement of out-of-plane stress functions

The 1st process provides accurate prediction of interlaminar stresses [Fig. 2(a)] along the in-plane
direction, but it produces undesirable oscillations in the out-of-plane direction [Fig. 2(b)]. The CLT
solutions cannot be recovered in the interior region (Fig. 4). Thus, the one-step process is insu�cient for
the accurate prediction of the interlaminar stresses.

The extended Kantorovich method is applied to improve interlaminar stress predictions. By assuming
layer-dependent out-of-plane stress functions in each layer and reapplying the principle of
complementary virtual work, the out-of-plane functions can be improved.

The in-plane stress functions determined from the 1st process are substituted into the complementary
energy density functions. The partial di�erentiations of gi and hi are carried out for Case I and Case II.
Since gi and hi are de®ned for each layer, the compatibility equations are also obtained in terms of g

�k�
i

and h
�k�
i for each layer.
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Fig. 2. (a) s3 at the 0/90 interface of [0/90]S laminate under unit extension. (b) s3 at the free edge of [0/90]S laminate under unit

extension.
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.Case I

�h
m
�4��k�
ij g

�k�IV
j �m

�2��k�
ij g

�k�II
j �m

�0��k�
ij g

�k�
j � x

�k�
i

i
dg�k�i dZ� L � 0 �k � 1,2, . . . ,N �,

�i,j � 1,2, . . . ,n�,
�29�

where

m
�4��k�
ij �

�h
Ŝ
�k�
22 fifj � Ŝ

�k�
26

ÿ
fipj � pifj

�� Ŝ
�k�
66 pipj

i
dx,

m
�2��k�
ij �

��
Ŝ
�k�
23

�
fif

II
j � f II

i fj

�
� Ŝ

�k�
36

�
f II

i pj � pif
II
j

�
ÿ Ŝ

�k�
44 f

I
i f

I
j ÿ Ŝ45

�
f I

ip
I
j � pI

i f
I
j

�
ÿ Ŝ

�k�
55 p

I
ip

I
j

�
dx,

m
�0��k�
ij �

�
Ŝ
�k�
33 f

II
i f

II
j dx

x
�k�
i �

�"
S
�k�
13

S
�k�
11

�Cÿ BhZ� � â3DT

#
f II

i dx: �30�

.Case II

�h
m
�4��k�
ij g

�k�IV
j �m

�2��k�
ij g

�k�II
j �m

�0��k�
ij g

�k�
j � n

�3��k�
ij h

�k�III
j � n

�1��k�
ij h

�k�I
j

i
dg�k�i dZ

�
�h

m
�3��k�
ij g

�k�III
j �m

�1��k�
ij g

�k�I
j � n

�2��k�
ij h

�k�II
j � n

�0��k�
ij h

�k�
j � x

�k�
i

i
dh�k�i dZ� L � 0 �k � 1,2, . . . ,N �,

�i,j � 1,2, . . . ,n�,
�31�

where

m
�4��k�
ij �

�
Ŝ
�k�
22 fifj dx,

m
�3��k�
ij � ÿ

�
Ŝ
�k�
26 pifj dx,

m
�2��k�
ij �

�h
Ŝ
�k�
23 � fif II

j � f II
i fj � ÿ Ŝ

�k�
44 f

I
i f

I
j

i
dx,

m
�1��k�
ij �

�h
�Ŝ�k�45 pI

i f
I
j ÿ Ŝ

�k�
36 pif

II
j

i
dx,
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m
�0��k�
ij �

�
Ŝ
�k�
33 f

II
i f

II
j dx,

n
�3��k�
ij �

�
Ŝ
�k�
26 fipj dx,

n
�2��k�
ij � ÿ

�
Ŝ
�k�
66 pipj dx,

n
�1��k�
ij �

�h
Ŝ
�k�
36 f

II
i pj ÿ Ŝ45f

I
ip

I
j

i
dx,

n
�0��k�
ij �

�
Ŝ
�k�
55 p

I
ip

I
j dx

x
�k�
i �

��
YhxpI

i ÿYhpi
�
dx: �32�

L represents boundary terms induced from integration by parts, and the superscript (k ) refers to the
kth ply in the laminate.

For arbitrary independent dg (k ) and dh (k ), Euler equations can be obtained from Eqs. (29) and (31).
The homogeneous solutions are assumed to be the exponential functions with the eigenvalues m (k ).

.Case I

g
�k�
i � v

g�k�
i em

�k�Z: �33�

.Case II

g
�k�
i � v

g�k�
i em

�k�Z

h
�k�
i � v

h�k�
i em

�k�Z: �34�
Substituting Eqs. (32) and (34) into Eqs. (29) and (31), the following equations are obtained for each

case.

.Case I

m
�0��k�
ij v

g�k�
j �

�
m
�2��k�
ij � m�k�2m�4��k�ij

�
v
gII�k�
j � 0

m�k�2v g�k�
j ÿ v

gII�k�
j � 0 �35�
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.Case II

m
�0��k�
ij v

g�k�
j �

�
m
�2��k�
ij � m�k�2m�4��k�ij

�
v
gII�k�
j �

�
n
�1��k�
ij � m�k�2n�3��k�ij

�
v
hI�k�
j � 0,

�
m
�1��k�
ij � m�k�2m�3��k�ij

�
v
gII�k�
j �

�
n
�0��k�
ij � m�k�2n�2��k�ij

�
v
hI�k�
j � 0

m�k�2v g�k�
j ÿ v

gII�k�
j � 0 �k � 1,2, . . . ,N �, �i,j � 1,2, . . . ,n�: �36�

The 2nd equation of Eq. (35) and the 3rd equation of Eq. (36) are used to construct formal
eigenproblems. Positive and negative roots of m�k�2 are chosen in this process and the homogeneous
solutions are constructed from 4n linear combinations for Case I and 6n linear combinations for Case
II.

.Case I

g
�k��H�
i � v

g�k�
ij b

�k�
j em

�k�
j Z �k � 1,2, . . . ,N �, �i � 1,2, . . . ,n�, � j � 1,2, . . . ,4n�: �37�

.Case II

g
�k��H�
i � v

g�k�
ij b

�k�
j em

�k�
j
Z

h
�k��H�
i � v

h�k�
ij b

�k�
j em

�k�
j
Z �k � 1,2, . . . ,N �, �i � 1,2, . . . ,n�, � j � 1,2, . . . ,6n�, �38�

where the b
�k�
j 's are variables to be decided from the boundary and continuity conditions. g

�k�
j �Z� and

h
�k�
j �Z� are assumed to be are constant in Eqs. (29) and (31).

.Case I

m
�0��k�
ij g

�k��P�
j � ÿx �k�i : �39�

.Case II

m
�0��k�
ij g

�k��P�
j � 0

n
�0��k�
ij h

�k��P�
j � ÿx �k�i �k � 1,2, . . . ,N �, �i,j � 1,2, . . . ,n�: �40�

The out-of-plane stress functions are given as follows:
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g
�k�
i � g

�k��H�
i � g

�k��P�
i

h
�k�
i � h

�k��H�
i � h

�k��P�
i �k � 1,2, . . . ,N �, �i � 1,2, . . . ,n�: �41�

The variables, bj, are determined from two conditions: Firstly, out-of-plane stress functions and their
®rst derivatives are zero at the top and bottom surfaces. Secondly, the boundary terms caused by
integration by parts in Eqs. (29) and (31) must be zero. They are the stress and variationally-consistent
displacement continuity conditions at the interfaces between plies.

Accordingly, the ®nal interlaminar stresses calculated by the 2nd process are given as follows.
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2.3. 3rd process: improvement of in-plane stress functions

The 2nd process eliminates the oscillation of the out-of-plane stress distributions [Fig. 2(b)] and
recovers the CLT solutions in the interior domain (Fig. 4). However, the interlaminar stresses obtained
by the 2nd process still show some oscillation in the in-plane direction as n increases [Fig. 2(a)].

The iteration process is continued to eliminate this oscillation. The 3rd iteration process is same as the
1st process, except that the out-of-plane stress functions are chosen from the 2nd process.

Further improvement of out-of-plane stress function can be obtained through processes similar to the
2nd process. In-plane stress function can be improved by a process similar to the 3rd one.

3. Numerical results

For veri®cation, composite laminates are analyzed for various layup con®gurations. The material
properties of a ply are given as follows.

E1=20 � 106 psi,
E2=E3=2.1 � 106 psi
G12=G13=G23=0.85 � 106 psi
n12=n13=n23=0.21
a1=0.22 � 10ÿ6 in/in/8F,
a2=15.2 � 10ÿ6 in/in/8F

The in-plane length b is assumed to be 2h.
The in-plane and out-of-plane stress distributions are given, respectively, and they are compared to

previous results. In the ®gures, Flanagan's results are equivalent to those of the 1st process.

3.1. Uniaxial tension

Fig. 2(a) shows the s3 distribution at the 0/90 interface of a [0/90]S laminate under unit extension.
The plot shows the results of various iterations. The result of the 3rd process converges, and it agrees
with Flanagan's results except at the free edge. As mentioned above, the result obtained by 2nd process
oscillates. The peak stress at free edge is signi®cantly improved by the present method. The distribution
of s3 at the free edge in a [0/90]S laminate is shown in Fig. 2(b). For comparison, Sandhu's result
(Sandhu et al., 1991) is shown as well. Sandhu's result was obtained by the ®nite element method using
288 continuous traction elements. The new results agree with those of Sandhu, and the stress singularity
at the interface is predicted well.

The distribution of s5 at the free edge of the [45/ÿ45]S laminate is shown in Fig. 3. Excellent
agreement between the present results and those of Wang and Choi (1982) is observed. In addition, the
present method accurately predicts the maximum shear stress at the interface.

The distribution of s2 at the interior of a [45/ÿ45/0/90]S laminate is shown in Fig. 4. As is shown in
the ®gure, the present method recovers the CLT solution exactly without any oscillation whereas
Flanagan's method does not accord well with the CLT solution. The computational results here are
obtained by a 3-time iterations with n = 8.

3.2. Thermal loading

The laminates, which are subject to thermal residual stress due to the curing process, are also
considered. Fig. 5(a) is the distribution of s3 at the centerline in a [90/0]S laminate under DT = 1. For
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comparison, Wang and Crossman (1977)'s numerical results and Kim and Atluri (1995)'s analytical
results are also shown. The shape of the interlaminar stress due to thermal loading is similar to those
due to extensional loading. All of the results show similar trends. The maximum stress at the free edge
obtained by the present study is the largest among the three.

The distribution of s3 at a free edge of a [90/0]S laminate under DT= 1 is shown in Fig. 5(b). The

Fig. 3. s5 at the free edge of [45/ÿ45]S laminate under unit extension.

Fig. 4. s2 at the interior of [45/ÿ45/0/90]S laminate under unit extension.
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Fig. 5. (a) s3 at the centerline of [90/0]S laminate under DT = 1. (b) s3 at the free edge of [90/0]S laminate under DT= 1.
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results of Kim and Atluri, and Flanagan do not provide accurate interlaminar stresses through the
thickness. However, the results by the present method agrees well with those of Wang and Crossman. It
should be emphasized that the present method correctly predicts the location and magnitude of the
maximum stress accurately.

3.3. Bending

Fig. 6(a) shows s3 and s4 distributions along the in-plane direction at the 0/90 interface of a [0/90]s
laminates under unit bending (B= 1/h ). The present method provides reliable stresses which agree with
those of Yin (1994a, 1994b). As the iterative process is continued, the peak stresses near the free edge
becomes larger than those of Yin. Once more, the peak stress at the free edge is improved by the
present iterative method. Fig. 6(b) depicts the through-the-thickness interlaminar normal stress
distributions. It shows antisymmetric pattern through the thickness of the laminates. The maximum
bending stress occurs at the interface between layers. The peak value is more accurately estimated
through each iteration. Fig. 6(c) shows the recovery of classical lamination theory (CLT) far from the
free edges. As the iterations are processed, the CLT solutions are accurately recovered in the interior
domain of the laminates. Fig. 7. shows interlaminar stress distributions in the in-plane direction at the
45/ÿ45 interface of [45/ÿ45]s laminates. Interlaminar stresses converge well as the iteration continues.
Fig. 8(a) shows interlaminar stress distribution in the in-plane direction at the 0/90 interface of [45/ÿ45/
0/90]s laminates. The peak stress increases as the iteration continues. Fig. 8(b,c) depict the distribution
s3 and s5 through the thickness. They show that peak stresses occur at the interfaces.

3.4. Twisting

The distribution of s5 in the in-plane direction at the 0/90 interface of [0/90]s laminates, obtained by
applying the computation process of Case II, is shown in Fig. 9. Since Case I cannot provide nontrivial
initial interlaminar stresses in the twisting load case, the assumed base functions hi(Z ) and gi(Z ) are
chosen independently. However, as the number of terms in the base function increases, numerical
instability occurs. Therefore, only one-term approximation was carried out for twisting problems.
Fortunately, even a one-term approximation provides convergent interlaminar stresses as the iteration
continues. Iterations are processed ®ve times to show the convergence of the calculated interlaminar
stresses. However, for completeness, numerical the problems of ill-conditioned matrices should be
resolved in a future study. Fig. 10(a,b) shows interlaminar stress distributions in the in-plane direction at
the 45/ÿ45 interface and s5 through the thickness of [45/ÿ45]s laminates. They provide convegent peak
stresses as the iteration proceeds. Fig. 10(c) depicts the recovery of interior solutions. The present
iterative method demonstrates the exact recovery of CLT solutions. Fig. 11(a,c) are for [45/ÿ45/0/90]s
laminates. Once more, convergent stresses and recovery of the CLT solutions are signi®cant.

4. Conclusions

The interlaminar stresses near free edges in composite laminates have been analyzed by the extended
Kantorovich method. The calculation process requires only two iterative steps. The ®rst step consists of
a process to calculate the out-of-plane stress functions from the in-plane functions and the other, vice
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Fig. 6. (a) s3 and s4 at the 0/90 interface of [0/90]S laminate under bending (B= 1/h ). (b) s3 at the free edge of [0/90]S laminate

under bending (B= 1/h ). (c) s2 at the interior of [0/90]S laminate under bending (B = 1/h ).
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Fig. 6 (continued.

Fig. 7. s3, s4 and s5 at the 45/ÿ45 interface of [45/ÿ45]S laminate under bending (B= 1/h ).
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Fig. 8. (a) s3, s4 and s5 at the 0/90 interface of [45/ÿ45/0/90]S laminate under bending(B=1/h). (b) s3 at the free edge of [45/ÿ45/
0/90]S laminate under bending (B = 1/h ). (c) s5 at the free edge of [45/ÿ45/0/90]S laminate under bending (B= 1/h ).
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Fig. 8 (continued).

Fig. 9. s5 at the 0/90 interface of [0/90]S laminate under twisting (Y=1/h ).
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Fig. 10. (a) s3, s4 and s5 at the 45/ÿ45 interface of [45/ÿ45]S laminate under twisting (Y=1/h ). (b) s5 at the free edge of [45/

ÿ45]S laminate under twisting (Y=1/h ). (c) s2 at the interior of [45/ÿ45]S laminate under twisting (Y=1/h ).
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versa. For various symmetric layup con®gurations, combined mechanical loads (extension, bending and
twisting) and residual thermal loads have been considered. Through the iteration process, accurate
interlaminar stresses are obtained.

The results show that the high stress gradient at the free edge correlates well with the previously
reported results, and the position of maximum stress was predicted accurately. The CLT solution was
recovered in the interior. Therefore, the new method accurately predicts the stress distributions over the
whole laminate domain.

For computational e�ciency, only gi is used as the initial base function under the extension,
bending and thermal loading (Case I). However, for the twisting case (Case II), two initial base
functions, gi and hi, are assumed independently because the base function of Case I is not su�cient
to provide nontrivial solutions for twisting problems, and one-term solutions are provided in these
cases. They are shown to be convergent and to recover the CLT solutions in the interior of laminates
as the iteration continues.

Acknowledgements

This work was supported by the Ministry of Education, Republic of Korea, under Contract No.
ME97-C-30.

Fig. 10 (continued).
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Fig. 11. (a) s3, s4 and s5 at the 0/90 interface of [45/ÿ45/0/90]S laminate under twisting (Y=1/h ). (b) s5 at the free edge of [45/

ÿ45/0/90]S laminate under twisting (Y=1/h ). (c) s2 at the interior of [45/ÿ45/0/90]S laminate under twisting (Y=1/h ).
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